Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke.
نویسندگان
چکیده
BACKGROUND Human umbilical cord multipotent mesenchymal stromal cells (UC-MSC) have recently been identified as ideal candidate stem cells for cell-based therapy. The present study was designed to evaluate therapeutic potentials of intracerebral administration of UC-MSC in a rat model of stroke. METHODS Rats were subjected to 2-hr middle cerebral artery occlusion and received 2 10 UC-MSC or phosphate-buffered saline as a control. Neurologic function evaluation was conducted weekly after transplantation. Brain injury volume and in vivo differentiation of transplanted UC-MSC were detected 2 or 5 weeks after the UC-MSC treatment. In addition, vascular density, vascular endothelial growth factor, and basic fibroblast growth factor expression in ipsilateral hemisphere after treatment and in vitro angiogenic potential of UC-MSC were assessed. RESULTS The transplanted UC-MSC survived for at least 5 weeks in rat brain. Compared with the phosphate-buffered saline control, the UC-MSC treatment significantly reduced injury volume and neurologic functional deficits of rats after stroke. In ischemic brain, UC-MSC widely incorporated into cerebral vasculature and a subset of them was capable of differentiating into endothelial cells. Furthermore, the UC-MSC treatment substantially increased vascular density and vascular endothelial growth factor and basic fibroblast growth factor expression in ipsilateral hemisphere of stroke. In vitro induction and tube formation assay further confirmed their angiogenic properties. CONCLUSIONS UC-MSC transplantation could accelerate neurologic functional recovery of rats after stroke, which may be mediated by their ability to promote angiogenesis.
منابع مشابه
Effect of Human Umbilical Cord Mesenchymal Stem Cells Transplantation on Nerve Fibers of A Rat Model of Endometriosis
Background Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs) have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal ...
متن کاملExtracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملP 152: Mesenchymal Stem Cells as a Therapeutic Target in Multiple Sclerosis
Neuroinflammation has a significant role in induce of Multiple sclerosis (MS) many approaches have been used to treat MS, but none of these methods have not been able to fully improve. One of the methods can suppress inflammation and regenerate the nervous system is the use of cell therapy. Using cell therapy in pre-clinic phase can be realized, it's mechanism and potency to suppress neuroinfla...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملImproving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions
Objective(s): Umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) are ideally suited for use in various cell-based therapies. We investigated a novel induction protocol (NIP) to improve the neuronal differentiation of human UCB-MSCs under appropriate conditions. Materials and Methods: This experimental study was performed in Iranian Blood Transfusion Organization (IBTO), Tehran, I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Transplantation
دوره 87 3 شماره
صفحات -
تاریخ انتشار 2009